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DISTINGUISHABILITY OF LIQUID ENVIRONMENTS IN THE 
PRESENCE OF BROWNIAN NOISE 

ERNEST GRUNWALD AND COLIN STEEL 
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254, USA 

This paper extends previous work on the dynamic averaging of distinct liquid environments by cage exchange to 
include potential energy fluctuations at the cage centers due to Brownian motions of molecules in the cage walls. 
After a brief review of the effect of cage exchange on the Schrodinger wave train associated with the electronic 
ground state of the caged molecule, typical magnitudes and time-scales for the Brownian potential energy 
fluctuations are estimated. Then a zig-zag model for the resulting noise in the wave trains is developed, and 
applied to analyze distinguishability in the presence of noisy cage exchange. When distinguishability survives the 
noise, the distinct caged species are fully fledged environmental isomers. Applications of these concepts are 
discussed. 

INTRODUCTION 

Solution chemists use models in which the liquid is 
treated as a polarizable dielectric continuum, and also 
models in which it is a collection of discrete molecules. 
The continuum models include the classic theories of 
Born, Debye, Onsager and others on ionic solvation, 
interionic effects and polarization by dipolar 
molecules.'-6 The subject molecule exists in a spherical 
'cavity' and interacts with a single entity, the surround- 
ing continuum. In physical organic chemistry, the 
'cavity' becomes the interior of a liquid 'cage,' but the 
essential feature, that the complex many-body interac- 
tions are reduced to two-body interactions of each 
molecule with its surrounding cage, is the same. In 
effect, the cage is part of the molecule, and also, 
because the cage is inseparable from its molecule, the 
interaction energy of the cage with its molecule is part 
of the energy of the molecular species, just as in hydro- 
gen cyanide the C-H bond energy is part of the energy 
of the HCN species. Thus, while recognizing that 
molecules in liquids do interact, the cage model fits in 
with the requirement, implied by the laws of dilute 
solutions, that molecules in liquids act as independent 
entities. 

The models in which liquids are collections of 
discrete molecules employ extensive computer-aided 
sampling to arrive at valid statistical-thermodynamic 

Some models borrow elements from both 
approaches."-'6 For instance, Oster and K i r k ~ o o d ' ~  
deduced intermolecular structure in water and the 
alcohols while retaining elements of the continuum 

approach. In the linear free energy approach of Taft and 
 other^'^-'^ to the prediction of free energies of solva- 
tion, the polarity/polarizability parameter n* is 
essentially a continuum property, similar to Onsager's 
molar polarization, while the hydrogen bond donating 
and accepting parameters retain elements of the 
discrete-molecule approach. 

In this paper we shall extend the concept of environ- 
mental isomers" to include the situation in which the 
cage is subject to Brownian noise. We shall see that 
these concepts afford a method of judging at which 
distance from a given molecule the surrounding fluid 
may be regarded as a continuum and at which shorter 
distance the discrete-molecule approach becomes 
preferable. 

PREVIOUS WORK 

Our aim17 has been to obtain criteria for the distinguish- 
ability of nominally different liquid environments. Since 
Schrodinger mechanics is part of general wave 
mechanics, our rudimentary model is a wave train in 
which the frequency switches stochastically between 
two distinct values, v, and vb. The connection to liquid 
environments will emerge soon. In Figure 1, the ampli- 
tude is constant, the transit times between frequencies 
are short and the residence times at v, and vb follow 
exponential distributions whose means, t, and tb. are 
equal. Fourier transformation of long wave trains of this 
sort yield power spectra in the frequency domain, as 
shown in Figure 2. These spectra are precise replicas 
of Nh4R lines when there is exchange between two 

Received 6 May 1994 
Revised 18 July 1994 

CCC 0894-3230/94/120734-09 
0 1994 by John Wiley & Sons, Ltd. 



DISTINGUISHABILITY OF LIQUID ENVIRONMENTS 735 

[ = 14.9 

[ = 0.172 

I 

Time 

Figure 1. Short sections of the type of wave trains subjected to 
fast Fourier transformation. As can be seen from Figure 2, the 
upper train will yield two well resolved lines whereas the 
lower train, in which switching is more rapid, yields a single 

collapsed line 
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Figure 2. (a) Steady-state solutions of the McConnell-Bloch 
equations in NMR with v, and vb =40 and 50 Hz and 1/T, = 0. 
(b) Fast Fourier transform power spectra of circularly 
polarized wave trains with stochastic frequency switching 

corresponding to exponential lifetime distributions 

chemical shifts, as shown by the solutions of the 
McConnell-Bloch equations" plotted alongside the 
Fourier transforms of the wave trains. In both cases, the 
line shape depends on a single parameter, the distin- 
guishability index E ,  defined as 

t =  2x1 v, - Vbl z (1) 
where z=  z,zb/(z, + zb). When 5 is large, the spectrum 
shows separate sharp bands, proving distinguishability. 
As 6 decreases, these bands first broaden and approach 
each other. They coalesce when t=a, and then col- 
lapse into a single sharp line, with loss of distinguish- 
ability, as 5 approaches zero. 

To establish the connection to Schrodinger waves Y, 
we begin with the stationary-state equation 

Y(x, t )  = @(x)exp[-2xi (~~/h) t ]  (2) 
where @ is the local spatial amplitude and 
exp(-2nni[e0/h]t) is the time dependence. The latter 
represents a circularly polarized wave with frequency 
vo = Eo/h. 

It is convenient to let E~ denote the energy of the 
electronic ground state of the isolated molecule, and 
assume energy additivity for electronic, internal vibra- 
tional and other modes. On that basis, the liquid cage 
effect may be treated as a perturbation of the electronic 
energy c0. This is shown for the simplest case of a one- 
dimensional cage in Figure 3. The interaction here 
involves the central molecule (1) and two neighbors, (2) 
and (3), one on each side. The cage potential is the sum 
of the pairwise potential energies, with r12 increasing to 
the right and rI3 to the left. Figure 3(a) shows the 
symmetric situation when 2 = 3 so that the (1,2) and 
(1,3) pairwise potentials are identical, and Figure 3(b) 
depicts the situation when 2 # 3. The two cages thus 
generate the perturbed electronic energies E, = E~ + V, 

Let \it denote the 'a' cage environment and \b the 'b' 
environment. That is, the central molecule is either (l)\a 
or (l)\b. As the cage configuration switches between \a 
and \b, the central molecule exchanges between the 
subspecies (l)\it and (l)\b, and the electronic ground 
state energy of (1) switches between E, and E ~ .  If we 
identify v, with E,/h and vb with Eb/h, the switch in 
energy is tantamount to a frequency switch. To show 
that an analogy exists between frequency switching in 
Schrodinger wave trains and in physical wave trains 
(such as Figure l), one must show (i) that the residence 
times at v, and v b  are long compared with transit times 
between v, and v b  and (ii) that the frequency switching 
follows the Ehrenfest adiabatic pr in~ip le , '~  that is, the 
stationary wave equation (2) applies throughout. As for 
(i), the central molecule in the cage and any one of its 
neighbors form an encounter pair whose mean lifetime, 
as modeled by a2/6D,  is of the order 3 x lo-" s, where 
(I is the encounter diameter (cage radius) and D is the 
diffusion coefficient.20 Since the cage expires when the 

and &b = &o + v b .  
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Figure 3. Cage potential for a central molecule (1) with two molecules 2, 3) in its ‘solvent’ cage. The cage potential is given \y 
V,, = VI,,(rl2)+ V ( 2 ) ( r 1 3 ) ,  where V,,, is the pair potential, and I r I2  I + f rI3 I = dlc,. For (a) and (b), do, = 12.60 and 12.42A, 
respectively. The painvise energies are given by V12)(rt,) = 4 ~ ~ ( ~ ,  ,)[(aul8, J3/r ,J)12 - (aul,, ,))/r,,l61. For Fage 
(a) uulI, 2) = uUcl 3) = 5.15 A, 2) = E ~ ~ ~ ,  3) =4.63 kJ mol-I. For cage (b) uu(l, 3) and EUll ,  3) arc as for (a) and uU(]. ,) = 5.0 A and 

eUII, ,) = 5.0 kl mo1-I 

encounter pair breaks up, 3 x lo-’’ s is also the order of 
the cage lifetime (7). On the other hand, the transit time 
between the \a and\b states is of order s, the time- 
scale of atomic displacements or vibrations. Thus 
condition (i) is satisfied. As for (ii), even the shorter of 
the time-scales in (i) is long compared with the s 
time-scale for electronic motions, so that condition (ii) 
is also satisfied. We may conclude, therefore, that the 
Schrodinger wave of the electronic ground state of a 
cage-switching molecule in a liquid shows exchange 
averaging just like the physical waves in Figure 1. The 
line shape depends on the value of 6.  Equation (1) is 
transformed to equation (3) by letting Y = E/hN,: 

(3) 

where E denotes energy per mole and N A  is Avogadro’s 
number. When E is given in J mol-‘ and z in s, equation 
(3) becomes 6 = 1.575 x 10’ol E, - Eb I z. In applying 
equation (3), we shall use the convention that two cage 
environments are clearly distinguishable when 6 2 5, 
and are exchange averaged when E <  1. In the 
intermediate range the distinguishability is borderline. 

SOME REPRESENTATIVE NUMBERS 

On introducing 3 x lo-” s for z and >5 for 6 ,  equation 
3) states that distinguishability exists when 1 E, - Eb 12 10 J mol-’. Compared with absolute solva- 

tion energies, 10 J mol-’ is small, but Figure 3 shows, 
schematically, that the differences between solvation 
energies might be expected to be small. 

To obtain quasi-empirical estimates, we shall use 
Hildebrand’s regular-solution model” to predict 

AknzEa,b for the process benzeneb + benzene\b. Here \a 
is a cage consisting of all-benzene neighbors and \b is a 
cage consisting of one B neighbor and the rest benzene 
neighbors. The calculation consists of two steps. (i) The 
energy of transfer per mole of benzene from pure 
benzene to a dilute solution of benzene in liquid B is 
AEB = Vk,,,(6, - Bknr)*,  where V is the molar volume 
and 6 is Hildebrand’s solubility parameter, 
6 = (AEvaJV)”. (ii) In step (i), a benzene molecule 
transfers from an all-benzene environment to an all-B 
environment. If the benzene molecule has s B neighbors 
in the latter, then the energy AknzEa,b for introducing 
one B neighbor is of the order of A E B / s .  In the follow- 
ing, we shall use s = 10. 

Results for some ‘regular’ neighbors are given in 
Table 1. One out of the 12 cases is exchange-averaged, 
one case is marginal and all others are distinguishable. 

In ideal solutions, heats of mixing are zero by 
hypothesis and environmental isomerism is out.*’ In 
regular solutions, heats of mixing are far from large, 
yet the above discussion indicates that environmental 
isomerism should be fairly common. However, this 
isomerism is generally masked because of the potential 
energy fluctuations arising from Brownian motion of 
molecules in the cage wall, and it is this problem that 
we now address. 

Amplitude of potential energy noise 
We shall use two model liquids: (a) idealized benzene, 
i.e. benzene with a spherically symmetrical cage poten- 
tial based on Lennard-Jones 6-12 pairwise potentials 
whose parameters reproduce the properties of dilute 
benzene gas; (b) idealized water, i.e. water with a cage 
potential based on Lennard-Jones painvise interactions 
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Table 1. Estimates of AbbemEs,b based on Hildebrand's solubility Finally, we calculate u&, = sat,, the variance in the 
parameters and the regular-solution model" potential of the primary molecule at its cage center, 

where s is the number of neighbors in the cage wall. 
B AknzEa.b 5" Commentb Since the overall noise results from the convolution of s 
____~ ~ 

17.6 13 6 D 
(CH3 14Si 12.7 330 160 D 
ca4 

CHZI, 24.1 250 120 D 
CI,C=CClz 19.0 0.4 0.2 A 
CS, 20.5 26 12 D 
(C, F, I3  N 12.1 400 190 D 
(C*HSIZO 15.1 120 60 D 

Cyclohexane 16.6 43 20 D 
C6F14 12.1 400 190 D 

Naphthalene 20.3 20 10 D 

n-Hexane 14.9 140 60 D 

Toluene 18.2 3 1.5 M 

'Ref. 21. Energy values in J mol-'. 6 Values in JIn C X I - ~ ~ .  

V,,=89cm3 mol-'; &,=18.8; r = 3 x l O - " s ;  s=10; 
E =  0.47AhE,,,. 
A = exchange-averaged; D = distinguishable; M = marginal. 

to which has been added a molecule dipole-cage dipole 
interaction inferred from the dielectric constant.22 The 
cages will be spherical, and the molecules are moving 
independently. The noise is measured by u ( ~ ) ,  the 
standard deviation of the fluctuating cage potential at 
the cage center. 

(a) The primary molecule is treated as stationary at 
the cage center. The first step is to obtain the mean 
amplitude of libration of one of the cage molecules in 
its own cage (Figure 4). The libration is in all possible 
directions, but only the motion along the line of centers 
to the substrate molecule is relevant to our calculation. 
We first find qwr, the amplitude of libration normal to 
the cage wall when the mechanical energy (potential + 
kinetic) equals the mean thermal energy RT. We then 
calculate the variance, u ; ~ ) ,  in the pair potential V(2) due 
to the Brownian motion between +qRT and -qRT. 

independent pairwise noise distributions, the shape of 
the overall distribution is nearly Gaussian, regardless of 
the shapes of the pairwise distributions. The near- 
Gaussian shape follows from the central limit 
theorem.23 The theorem predicts a strictly Gaussian 
shape in the limit as s goes to infinity. In practice, 
Gaussian-like envelopes are produced when s is as small 
as 5.23 

For benzene the Lennard-Jo;es parameters are 
E,, = 4.63 kJ mol -' and u,, 5.15 A.24 For s = 10 these 
parameters yield qRT = 0.87 A and the standard deviation 
of the fluctuating cage potential u ( ~ )  = 2.6 kJ mol-' 
(kilojoules, not joules!). 

(b) In the two-state model of water, one state 
has s=4, the other s=5.22 In the model used, the 
dipole axis of the caged water molecule defines the z- 
axis of the Cartesian coordinate system. The s water 
molecules in the cage wall are placed so that s/6 
interact with the central water molecule from any of 
the six Cartesian directions. Thus, from any direction, 
we have s/6 Lennard-Jones pairwise interactions with 
E~ = 6.0 kJ mol-' and u,, = 2.72 A. In the z-direction 
we have an additional water dipole-cage interaction, 
given22 for s = 4 by v d d  = -240.7/(3.>5 + q,)3 - 
240.7/(3.15 - ~7, )~  kJ mol-', where qz is in A. For s =  5 
the expression becomes22 Vd, = -109.0/(3.15 + qz)3  - 
109.0/(3.15 - q,)3.  ~ 

For s = 4 ,  qRT=p.18Aand ~(~-=1~24kJmol-~along 
z ,  and qRT = 0.28 A and u ( ~ , . =  0.90 kJ mol-' along x an$ 
y .  For s = 5, the corresponding mean values are 0.26 A 
and 0.97 kJ mol-'. In the fgllowing we shall actually 
use the values of qRT = 0.25 A and u ( ~ )  = 1.05 kJ mol-' 
for both the s-states. 

SCHRODINGER WAVE TRAINS WITH BROWNIAN 
FREQUENCY NOISE 

According to our calculations (Table 1), cage-energy 
differences I Eb - E, I in regular solutions tend to be 
small compared with the standard deviations u ( ~ )  of the 
noise in the cage potential. As a result, we must deal 
with issues that are not part of the daily ration of a 
solution chemist: (i) the time-scale and possible 
exchange-averaging of the fluctuations, (ii) the impact 
(if any) on the validity of the Ehrenfest adiabatic 
principle and (iii) distinguishability in the presence of 
noise. These issues will now be considered. As a first 
step, we shall propose a suitable model for the Brown- 
ian fluctuations. 

Figure. 4. Molecule 1 surrounded by its cage, which is shown 
as a full circle. The cage of one of the molecules (2) 
comprising the cage wall of 1 is shown as the dashed circle. 
Brownian motion of 2 in its cage affects the potential of 1 

through the varying 1,2-painvise interaction. 

Zig-zag model 
A Schrodinger wave whose potential energy fluctuates 
about a mean value E ,  with a standard deviation u ( ~ )  
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mimics an FM wave whose carrier frequency v 1  equals 
c l / h ,  and whose frequency modulation is random 
frequency noise with a standard deviation of u'cc,/h. As 
discussed above, the distribution function for the 
potential energy (and hence for the random modulation 
frequencies) is virtually Gaussian. Figure 5 shows a 
short segment of a wave train with a single carrier 
frequency v1 and (exaggerated) frequency modulation. 
We are assuming here that the frequency follows the 
zig-zag model for Brownian frequency noise pictured in 
Figure 6. This model is inspired by the fact that the 
Brownian paths of micron-size particles suspended in 
liquids, when observed under a microscope, appear to 
be zigzags. Apparently, most of the time the net force 
from the environment is relatively ineffective, but 
occasionally a force lies far out in a wing of a distri- 
bution function and then is strong enough to kick the 
particle towards a random new position in the Gaussian 
frequency distribution. A reader familiar with gas-phase 
kinetics will recognize that the zig-zag model is the 
Brownian analog of the strong-collision model of 
kinetic the01-y.'~ Note that the noise generated in Figure 
6 has the typical spiky appearance of real noise. The 
mean time between the sharp changes of slope is 
identified with the Brownian correlation time, which 
will now be discussed. 

Correlation time 
The time-scale for noisy fluctuations is given by the 
correlation time T,,.~~ For random noise due to Brown- 
ian motion we may think of z,,, as a dynamical memory 
time. In the absence of Brownian forces the dynamic 

t i 

Time 

Figure 5. A short segment of a wave train in which the 
frequency vanes based on the zig-zag model of Brownian 
frequency modulation. The observation time is of order 2t,,, 
where t,,, is the mean of the individual correlation times (fi). 
The frequency first increases linearly for f,, then changes to a 
new rate for t, + both chosen stochastically. The modulation 
is exaggerated; on a realistic scale the modulation would be 

nearly invisible 
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Figure 6. Zig-zag model of Brownian frequency noise. 
(a) Plot of Y vs time for about 1 0 0 ~ ~ .  (b) A segment of (a) 

expanded by a factor of 5 

path of a molecule can be predicted from the boundary 
conditions at t = O ,  but the continual Brownian barrage 
induces statistical deviations from the predicted path 
and, after a mean time q,,, destroys its memory. The 
mean time between the sharp changes of slope equals 
z,,, while the individual times follow an exponential 
distribution about this mean. 

To obtain numerical values for z,, for potential- 
energy fluctuations in a liquid cage, we shall refer to 
chemical kinetics. According to the principle of 
dynamic balance, the rate laws and rate constants for 
the forward and reverse reactions in a kinetic system on 
its way to equilibrium remain valid at dynamic equili- 
brium. This principle has been well tested, by 
comparing rates of relaxation to equilibrium with rates 
of exchange at equ i l ib r i~m.~~  In the statistical theory of 
Brownian motion, the fluctuation-dissipation theorem 
plays an analogous role,26 by connecting the relaxation 
of Brownian ensembles to equilibrium with the turnover 
dynamics at equilibrium. For example, rate constants 
for dielectric relaxation to rotational equilibrium in 
liquids may be identified with I/zc,,, for the redistribu- 
tion of molecules among the rotational energy values at 
equilibrium.28 

In the present case, the Fokker-Planck equation has 
been solvedz6 for the relaxation to equilibrium of 
Brownian ensembles in quadratic potential wells of the 
form, V=RT(q/q,,)'.  The relaxation time for the 
ensemble average of q2, (q'), and hence for (V), is 
given by qiT14D, where D is the coefficient of linear 
diffusion for the given liquid.z6 Although the potential 
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wells in our problem are not strictly quadratic, the 
model is close enough. We shall therefore evaluate t,,, 
via the equation 

(4) 
For benzene at 298K, D = 2 , 3 ~ 1 O - ~ c m ~  s-1,29 and 
qRT = 8.7 x cm (see above), hence t,,, = 8 x 

s. For water at 298 K, D = 2.25 x lo-' cm2 s- ' ,~ '  
and qRT = 2.5 x cm, hence z,,, =: 0.7 x s. 
Note that the order of l/zco, (1012-1013 s-I) agrees with 
that of the hard-sphere collision frequency per molecule 
predicted for common liquids. 

For our purpose, the key point is that z,, is long 
enough for the Ehrenfest adiabatic principle to hold. 
That is, the electronic ground state of the caged mol- 
ecule is a stationary state, although its energy is noise- 
broadened. We also learn that z,, is about 100 times 
shorter than the cage-exchange time z. This implies a 
barrier of order RT ln(100) between the cages. 

Noisy wave train 
As is well known to users of Fourier transform spectro- 
meters, data in the time domain and their transforms in 
the frequency domain express the same reality. For 
wave trains it is natural to start in the time domain, but 
when the wave incorporates stochastic frequency 
fluctuations it is convenient to transform to the fre- 
quency domain, for the infinity of fluctuations then 
becomes compressed into a single power spectrum 
which can be understood at a glance. We shall begin, 
therefore, with Schrodinger wave trains in the time 
domain and end up with their power spectra. 

In this section we examine the effect of the Brownian 
correlation time on the spectral band width. There is 
some kinship between this and the natural 'line' width 

in magnetic resonance spectra, except of course that our 
width relates to an electronic ground state rather than to 
a spectral transition. As is well known, natural line 
widths in magnetic resonance" are fairly sensitive to 
z,,,, and we might expect some sensitivity here because 
potential-energy fluctuations themselves are a kind of 
exchange process prone to exchange averaging. 

In our computer simulations we used the zig-zag 
model for Brownian frequency noise, and parameters 
corresponding to E,, = -40 W mol-I, B ( ~ )  = 1.0 kJ mol-' 
and z,,, either 0.7 x s 
(as for benzene). The resulting Fourier transforms are 
shown in Figure 7. The shorter z,, produces the nar- 
rower band, but the two half-widths are within a factor 
of two even though z,, varies by more than tenfold, 
and the broader width is just less than ( T ( ~ ) .  We conclude 
that in contrast to NMR, in the present problem the band 
widths are rather insensitive to rm,. 

s (as for water) or 8 x 

Inclusion of cage exchange 
In Figure 6 we considered wave trains with Brownian 
frequency modulation and a single carrier frequency. In 
Figure 8 we consider similarly noisy wave trains in 
which the carrier frequency switches stochastically 
between two frequencies, v, and vb, characteristic of 
two discrete cages. Each line shows one cycle of 
exchange b + \ b + b ) ,  with the \b segment always 
occumng in the middle half. Magnitudes of the ratio 
(= (Eb - E , ) / C T ( ~ )  vary from 0.35 to 5.0. The dis- 
sonance of the Brownian frequency noise tends to 
obscure the switching points. Cage switching is clear 
when (=5 .0 ,  marginally visible when 5=2.0 and 
essentially invisible when c <  1.5. The mean cage 
exchange time z in these plots is about 40 times longer 
than tco,. 

u(~) = 1 .O kJ/rnol 

Figure 7. Effect of the correlation time for the Brownian noise on the band width in the frequency domain. Noisy wave trains in the 
time domain were simulated using the zig-zag model described in the text 
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Figure. 8. Brownian frequency noise with cage exchange. Each 
segment is labelled by its value of 5 [= 1 E,  - E. I /ole,], and 
shows one cycle of exchange (b -+\b -+b) with the b section 
always occumng in the middle half. Only when I (I > 5 is 

exchange clear, otherwise it is masked by noise 

Power spectra resulting from Fourier transforms of 
long, noisy, frequency-switching wave trains are 
clearer, as shown in Figures 9 and 10. Values of 5 
[equation (3)] are 40 throughout, so that in the absence 
of Brownian noise each power spectrum would consist 
of two narrow bands, suggested by the 'sticks' in the 
figures. The parameters adopted in Figure 9 are intended 
to resemble those for benzene at room temperature. The 
figure assumes equal cage populations. The smallest 

value of I E , - E , I ,  0.9H mo1-l [0.35a(,,l, was 
chosen as a real possibility for benzene because it fits 
the predicted energy difference for the two lowest 
pairwise potential minima.32 The power spectrum here is 
a symmetrical band whose b : \b components overlap so 
strongly that practical distinguishability is out. The other 
values for 1 Eb - E, I exceed realistic possibilities and 
are purely instructive. There are two recognizable peaks 
in both. These peaks coalesce (not shown) when 

The parameters adopted in Figure 10, including the 
relative cage populations of 0.7/0.3 and 
I Eb - E, I = 10 kT mol-', as shown in (d), are intended 
to fit the two-state model for water.*' The smaller values 
for I Eb - E, 1 are instructive only. Distinguishability is 
strong when I Eb - E,I = 10 kT mol-' [9.5a(,,], and it is 
clear that the two states of water could easily be 
environmental isomers. Distinguishability in the form 
of distinct peaks or a shoulder persists down to 

E b - E ,  = 1 kT mol-' (la(c), not shown). When I I  Eb - E, = 0.35a,,,, the peaks overlap so strongly that 
a single, seemingly symmetrical band results. 

decreases, it is tempting to 
identify the loss of distinguishability with coalescence 
of the separate bands in the power spectrum, which 
(depending on z/z,,, and relative peak height) occurs in 
the range 1 < ( < 2. Considerations based on informa- 
tion theory (not described here) indicate, however, that 
this criterion is conservative, and that with careful 
design, 5 might be reduced to nearly half of the preced- 
ing estimate. 

IEb-E,I % 1.50(,). 

As (= I Eb - E, I 

IEb-Eol = 0.9 
cr(c) = 2.6 kJ/rnol 

( = 0.35 

JEb-EJ = 5.2 

25 30 35 40 45 50 

Energy (kJ/mol) 

Figure 9. Model power spectra for liquids having benzene-like values for ole), z,,, and z. Units for I E, - E, I are kJ mol-'. When 
1 Eb -E.I =0.9kJ mol-', 5 =400 
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u(c) = 1.05 kJ/mol IE,-EaI = 0.37 

T = 0 . 6 ~ 1 0  sec  

IE,-EaI 9 10 

-= 9.5 1 
26 20 30 32 34 36 30 40 42 44 

Energy (kJ/mol) 

Figure 10. Model power spectra for liquids having water-like values for utC), z,,, and z. Units for I E, - E, I are kJ mol-I. The cage 
populations are in the ratio 0.7/0.3. When 1 E, - E,  1 = 10.0 kJ mol-’, 5 = 1000 

DISCUSSION 

Chemists usually deal with the spatial part of the 
Schrodinger wave function, on the assumption that the 
system is in a stationary state. This may not be true 
however, because real-life systems are subject to 
external perturbations. Retaining the time-dependent 
part of the wave function then gives a more complete 
picture of the system. Of course, in spectroscopy we 
only observe the Schrodinger wave indirectly, since the 
spectral frequency equals the difference between the 
frequencies of the Schrodinger waves associated with 
the initial and final states in the transition. However, this 
does not lessen the importance of the underlying state 
wave functions, neither the spatial nor the time depen- 
dent parts. 

One prediction which emerges clearly from the 
present work is that there are two kinds of distinguish- 
ability in liquids, which will be called ‘ideal’ and ‘real.’ 
Ideal distinguishability is based on cage exchange in the 
absence of Brownian potential energy noise and only 
requires the absence of cage-exchange averaging. As a 
corollary, the distinguishability index 6, defined in 
equation (3) ,  must be >x ,  where x is of the order of 
1-5. 

Real distinguishability requires not only the absence 
of cage-exchange averagin , but also that the cage- 
energy difference I E, - E, 7 be sufficiently great to 
stand out over the Brownian noise so that 
5 = I Eb - E, I / o ( ~ )  2 y, where y is of the order of 1-2. 
This is practical or operational distinguishability, so that 
the molecules occupying the different cages are genuine 

isomers (environmental isomers) by orthodox chemical 
standards. As stated in previous papers,I7 a likely 
example are the two ‘states’ of liquid water. The two- 
state model for water has had trouble being accepted, in 
spite of good experimental evidence,33 because without 
environmental isomers the nature of the two states is 
hard to rationalize. The HOH molecule has just one 
stable structure, not two. Also, if hydrogen-bonded 
complexes were forming, one would expect to find 
numerous complexes, not two. On the other hand, 
Figure 10 shows that the two states of water would be 
distinguishable if they were environmental isomers. 
Evidence concerning the nature of two water cages was 
discussed b Grunwald22 some years ago, and Benson 
and Siebert have shown how the thermodynamics of 
water can most readily be understood in terms of a two- 
state model. Further, as will be shown in a future 
paper,35 the concept of environmental isomers provides 
a simple explanation for the remarkable 
enthalpy-entropy compensation that has been observed 
in certain association e q ~ i l i b r i a . ~ ~  

The above discussion has been in terms of a molecule 
and its first solvation shell (primary cage) (Figure 4). 
There will also be a second shell at a greater distance. 
Since pairwise interaction energies vary strongly with 
distance, approximately as l / r6 ,  a change in the 
configuration of the second shell will result in a much 
smaller value for I E, - Eb I compared with the value for 
the first shell, roughly 1/64 [= (1/2)6]. In terms of 
equation (3) and typical values such as are given in 
Table 1, this indicates that beyond the second shell 

< 1, and here exchange averaging will be the norm. At 

z 
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such distances the liquid becomes a genuine continuum. 
For example, the ion clouds visualized by the 
Debye-Huckel theory2 as forming around ions in highly 
dilute solutions may now be seen to be genuine con- 
tinua. It is interesting that such distances correspond to 
the distance at which structure associated with the pair 
distribution function becomes strongly damped.” 

In between there are regions of borderline distin- 
guishability, both real and ideal. Onsager’s theory of the 
dielectric constant3 has the caged polarizable dipole 
interact with a polarizable dielectric continuum. The 
liquids treated successfully in this way tend to fit 
regular-solution models and, judging by Table 1, ideal 
distinguishability mostly exists. On the other hand, the 
magnitudes of [ = 1 Eb - E, I /acc, are well below unity, 
and real distinguishability is mostly out. We infer, 
therefore, that for dielectric purposes, low values of [, 
even though coupled with ideal distinguishability 
( l >  l), may be sufficient to produce continua. 
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